• Home
  • Prakash
    • R and D
    • Smart Home
  • Basics
    • Capacitors
      • Color codeing Disc Capacitor Capacitor characterstics Polarity Non Polarity Series Connection Parallel Connection
    • Diodes
      • Zener Diode Light Emitting Diode Signal Diode Photo Diode
    • Inductors
    • Transistor
      • Silicon Germenium NPN PNP MOSFET SCR
    • Resistors
      • Color codeing 4-Band 5-Band Series Parallel Potential Meter
    • Logics
      • Analog Logic
      • Digital Logic
      • Hexa Decimal Numbers
      • Octal Numbers
      • Binary Fraction
      • Binay to Decimal
    • OP-Amplifiers
      • Basics
      • Oscillators
      • Transistor Switch
      • 555 IC circuits
      • Waveform Generators
      • 741 IC Circuits
    • Power supply
      • Transformer
      • Halfwave Rectifier
      • Fullwave Rectifier
      • Bridge Rectifier
      • 78xx Series
      • 0 to 30v Regulator
  • Modules
    • H-Bridge
      • L293D Bridge
      • Relay Bridge
    • RF 434MHz Modules
    • Relay Modules
    • Push to ON switch
    • Push to OFF switch
  • Sensors
    • Analog sensors List-1
      • LDR Photo Diode Solar Cell Transducers Temperature Humidity Sensor Soil Moisture Ranger Sensor Range Detection
    • Analog sensors List-2
      • Flame Sensor Force Sensor Flex Sensor Ambient Sensor Motion Sensor Vibration Sensor Sound Sensor UltraSonic Sensor GrayScale Sensor
    • Digital Sensors
      • Touch Sensor Tilt Sensor Signal
    • 3-Axis Sensor
    • Gyro Sensor
  • Projects
    • Embedded
      • Mini Projects 8051 Arduino NodeMCU MSP430 Raspberry IOT ARM
    • C #
      • Visual Basic Visual Studio
    • Matlab
    • VLSI
    • PHP-HTML
    • Contribute
  • Downloads
  • Technology

BINARY NUMBERS


Binary Numbers

In electronics, binary numbers are the flow of information in the form of zeros and ones used by digital computers and systems.

                              

                                     
Unlike a linear, or analogue circuits, such as AC amplifiers, which process signals that are constantly changing from one value to another, for example amplitude or frequency, digital circuits process signals that contain just two voltage levels or states, labelled, Logic “0” and Logic “1”.
Generally, a logic “1” represents a higher voltage, such as 5 volts, which is commonly referred to as a HIGH value, while a logic “0” represents a low voltage, such as 0 volts or ground, and is commonly referred to as a LOW value. These two discrete voltage levels representing the digital values of “1’s” (one’s) and “0’s” (zero’s) are commonly called: BInary digiTS, and in digital and computational circuits and applications they are normally referred to as binary BITS.

Binary Bits of Zeros and Ones

                   binary numbers bits
 
Because there are only two valid Boolean values for representing either a logic “1” or a logic “0”, makes the system of using Binary Numbers ideal for use in digital or electronic circuits and systems.
The binary number system is a Base-2 numbering system which follows the same set of rules in mathematics as the commonly used decimal or base-10 number system. So instead of powers of ten, ( 10n ) for example: 1, 10, 100, 1000 etc, binary numbers use powers of two, ( 2n ) effectively doubling the value of each successive bit as it goes, for example: 1, 2, 4, 8, 16, 32 etc.
The voltages used to represent a digital circuit can be of any value, but generally in digital and computer systems they are kept well below 10 volts. In digital systems theses voltages are called “logic levels” and ideally one voltage level represents a “HIGH” state, while another different and lower voltage level represents a “LOW” state. A binary number system uses both of these two states.
Digital waveforms or signals consist of discrete or distinctive voltage levels that are changing back and forth between these two “HIGH” and “LOW” states. But what makes a signal or voltage “Digital” and how can we represent these “HIGH” and “LOW” voltage levels. Electronic circuits and systems can be divided into two main categories.
  • • Analogue Circuits – Analogue or Linear circuits amplify or respond to continuously varying voltage levels that can alternate between a positive and negative value over a period of time.
  • • Digital Circuits – Digital circuits produce or respond too two distinct positive or negative voltage levels representing either a logic level “1” or a logic level “0”.
  • Share This:  
  •  Facebook
  •  Twitter
  •  Google+

Related Posts:

  • DTMF DECODER WORKING & APPLICATIONS DTMF Decoder Application Circuit and Working Procedure DTMF Decoder In earlier days, our telephone systems were operated by manually in a te… Read More
  • Road Lane Detection with Raspberry Pi Road Lane Detection with Raspberry PiSimple road lane detection on Raspberry Pi 3 using OpenCV and Python. Frame rates obtained up to 17 FPS.Roa… Read More
  • Autonomous Lane Detection Car Using Raspberry Pi and OpenCV - Part 2 Autonomous Lane Detection Car Using Raspberry Pi and OpenCV - Part 2RASPBERRY PIByAshish Choudhary Jan 28, 20221Autonomous Lane Detection C… Read More
  • SERVO MOTOR INTERFACING ARDUINO Sweeps the shaft of a RC servo motor back and forth across 180 degrees. This example makes use of the Arduino servo library. Hard… Read More
  • Autonomous Lane Detection Car Using Raspberry Pi and OpenCV - Part 1 Autonomous Lane Detection Car Using Raspberry Pi and OpenCV - Part 1RASPBERRY PIByJOYDIP DUTTA Nov 18, 20210Autonomous Lane Detection CarIn… Read More
Terms and Conditions -
Privacy Policy -

Contact Us

Name

Email *

Message *